連載 :
  インタビュー

「AIの民主化」を掲げるDataRobot、日本での活動を本格化

2017年3月31日(金)
松下 康之 - Yasuyuki Matsushita
ボストン発のAIベンチャー、DataRobotが日本での本格的な活動を始めた。代表には、前日本ネティーザの原沢氏が就任。パートナーとの協業で日本市場での売り上げ拡大を狙う。

2012年にボストンで起業されたAIベンチャーのDataRobotが、日本における本格的な活動を開始した。DataRobotはAIの中でも近年非常に市場が盛り上がっている機械学習を、シンプルなグラフィカルユーザーインターフェースで素早く構築できる自動化ソリューションを提供している。今回、新たにカントリーマネージャーの発表と東京オフィスの開設を行い、すでにパートナーとなっている新日鉄住金ソリューションズとともに、営業活動を本格化させるという。

今回は、DataRobotのカントリーマネージャーである原沢滋氏、データサイエンティストであるシバタアキラ氏にインタビューを行い、DataRobotのソリューションやこれからのビジネスについて聞いた。

左、データサイエンティストのシバタアキラ氏、右、カントリーマネージャーの原沢氏

左、データサイエンティストのシバタアキラ氏、右、カントリーマネージャーの原沢氏

まずDataRobotについて教えてください。

シバタ氏:もともとデータサイエンティストが集まってできた会社で、データサイエンティストの「天下一武道会」でもあるKaggleのコンペティションで上位に入っているようなデータサイエンティストが、2012年に創業した会社です。最初は2人で始めて、今は150名くらいになりました。本社がボストンにあり、開発の拠点はウクライナのキエフに、また海外の拠点として東京、シンガポール、ロンドン、パリなどがあります。機械学習を使って分析をやるんですが、単に分析するだけではなくて未来を予測するということができるようになります。例えば保険や携帯電話の解約を予測する、というようなことができるようになります。2015年にリクルートさんが資本を入れてくれたんですが、リクルートさんはユーザーとしても仕事と人のマッチングなどに使っていただいています。

原沢氏:私達は「AIの民主化」と言っているんですが、これまで専門家を雇わないとできなかったような、分析や予測などのデータサイエンティストの仕事を誰でもができるようにする。そのための自動化を実現するソフトウェアを提供するのがミッションです。

マネタイズはどのように?

シバタ氏:基本的には2つの使い方があります。SaaSとして使っていただく方法と、オンプレミスのソフトウェアを年間ライセンス利用料の形で使っていただく方法です。どちらも機械学習のためのプロセス、これはDataRobotでは「Worker」と呼んでいますが、その数によって価格が変わります。あとユーザーIDの数、つまり利用する人の数でも価格は変わりますね。Workerを増やせば、複数のモデルを並列に実行できることになります。実際にはオンプレミスで利用していただいている例が多いです。SaaSの場合は新しいモデルができたら常にUpdateしていきますので、最新のモデルを利用することができます。オンプレミスの場合は数ヶ月に1回ぐらいの頻度で更新を行う形になります。

GUIで簡単にモデルを構築できる

GUIで簡単にモデルを構築できる

通常はデータサイエンティストがデータと目的によってモデルを選択してプログラミングを行って実行するという部分を、GUIを使って簡単にするということでしょうか?

シバタ氏:その部分が目立ちますけど、実際には機械学習のモデルを自動化してくれるということが重要ですね。機械学習のモデルだけではなくて予測のためのデータを準備する部分も組み込まれていますので、例えば欠損値をどうするのか? という辺りにも我々のデータサイエンティストのノウハウが組み込まれています。そのデータに最適なモデルを自動的にリストアップすることで、素早く試すことができます。それに単に試行するだけではなくて、ある程度モデルが固まったところで運用に組み込むために実行用のスクリプトを作ります。それをREST APIで呼ぶことで、実際のデータ分析、予測をシステム化することができます。実際には、その部分にものすごく開発工数がかかりますので、そこを評価していただいています。それこそ数ヶ月かかっていたことが、数時間でできるようになるのです。それにプログラマーやデータサイエンティストだけではなく、今はExcelで分析をやっているような人にも使ってもらえるようになるのが大きいと思います。

モデルは今どのくらいあるんですか?

シバタ氏:全体で1000ぐらいはあります。アルゴリズムには向き不向きがありますので、そのデータに向いたアルゴリズム、テンプレートを表示します。その辺りに、データサイエンティストのノウハウが効いてます。

Googleが深層学習の説明に使うような大量の画像から猫を見分ける、みたいなことはできるんですか?

シバタ氏:今のバージョンは入力として数値データを想定していますので、画像を直接読み込ませることはできません。画像を数値化して、そのデータを入力として使うやり方になりますね。実際に社内のエンジニアが試してみたところ、高い精度で画像認識を行えたと言っています。将来的な開発計画としては、「時系列データをなるべく手間をかけずに処理する」と言う部分と、教師なし機械学習をやりたいと考えています。他には、Hadoopのようにデータの処理をマッシブに並列処理化するというのも今後の製品計画の中に入っています。

予測した結果をビジネスに反映するために、例えば経営層向けのダッシュボード的にデータを可視化する、というようなことはできるんですか?

原沢氏:今使っている機能は全部APIでコールできますので、例えばTableauからそのAPIをコールしてもらえばデータを取ってダッシュボードなどにビジュアライズすることができます。

日本でのビジネス計画は?

原沢氏:売り上げに関しては公表することはできませんが、日本のオフィスの増強は検討しており、現在の5名体制を10名以上にしようというのが2017年の計画です。他にもパートナーも増やしていきたいと思っています。プログラミング言語のように、ユーザーが勝手になんでもできるというソフトウェアではないので、PoC(実証実験)をパートナーと一緒に進めながら拡めていけたらと思っています。日本はDataRobotにとっても重要な市場なので、これからご期待ください。

Fortune誌からAIをリードするベンチャー50社にも選ばれているという

Fortune誌からAIをリードするベンチャー50社にも選ばれているという

GoogleやMicrosoft Azureなど大手が進出している機械学習の分野に、Kaggleでもトップと言われるようなデータサイエンティストの知見を形にして「機械学習の民主化」を目指すベンチャーのDataRobotであるが、すでに国内ではリクルートホールディングス、大阪ガス、パナソニックなどの大手のユーザーを獲得している。ベンチャーには鬼門のローカライゼーションも、GUIのインターフェースなどはシバタ氏の尽力でかなりこなれた日本語になっている。これからの成長が期待できそうだ。

著者
松下 康之 - Yasuyuki Matsushita
フリーランスライター&マーケティングスペシャリスト。DEC、マイクロソフト、アドビ、レノボなどでのマーケティング、ビジネス誌の編集委員などを経てICT関連のトピックを追うライターに。オープンソースとセキュリティが最近の興味の中心。

連載バックナンバー

設計/手法/テストインタビュー

現場の声から生まれた国産テスト自動化ツール「ATgo」が切り開く、生成AIを駆使した次世代テスト自動化の最前線

2024/11/6
六元素情報システム株式会社のテスト自動化ツール「ATgo」概要と開発の背景、今後のロードマップについて、同社の石 則春氏と角田 聡志氏に聞いた。
仮想化/コンテナインタビュー

クラウドネイティブが当たり前の時代に向けて「ITエンジニアのスキルアップ」としてコンテナを学ぼう

2024/10/23
クラウドや仮想化など、日々進化するクラウドネイティブ技術をどのように学ぶのか。IT教育・研修サービスを提供する株式会社カサレアルの新津佐内氏にお話を伺った。
運用・管理インタビュー

GitLabとNTTデータグループのパートナーシップが切り開く未来: VSMとVSAを軸にした効率化の実現

2024/10/17
GitLabはNTTデータグループと販売パートナー契約を締結。GitaLabがVSMやVSAを中心に、どのような役割を担っていくのか。今後の展望と合わせて聞いた。

Think ITメルマガ会員登録受付中

Think ITでは、技術情報が詰まったメールマガジン「Think IT Weekly」の配信サービスを提供しています。メルマガ会員登録を済ませれば、メルマガだけでなく、さまざまな限定特典を入手できるようになります。

Think ITメルマガ会員のサービス内容を見る

他にもこの記事が読まれています